Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Surg Res ; 296: 497-506, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325012

RESUMO

INTRODUCTION: The mechanism of post-traumatic brain injury (TBI) hypoxemia involves ventilation/perfusion mismatch and loss of pulmonary hypoxic vasoconstriction. Inhaled nitric oxide (iNO) has been studied as an adjunct treatment to avoid the use of high positive end-expiratory pressure and inspired oxygen in treatment-refractory hypoxia. We hypothesized that iNO treatment following TBI would improve systemic and cerebral oxygenation via improved matching of pulmonary perfusion and ventilation. METHODS: Thirteen human patients with isolated TBI were enrolled and randomized to receive either placebo or iNO with measured outcomes including pulmonary parameters, blood gas data, and intracranial pressure (ICP) /perfusion. To complement this study, a porcine model of TBI (including 10 swine) was utilized with measured outcomes of brain tissue blood flow and oxygenation, ventilator parameters, and blood gas data both after administration and following drug removal and clearance. RESULTS: There were no clinically significant changes in pulmonary parameters in either the human or porcine arm following administration of iNO when compared to either the placebo group (human arm) or the internal control (porcine arm). Analysis of pooled human data demonstrated the preservation of alveolar recruitment in TBI patients. There were no clinically significant changes in human ICP or cerebral perfusion pressure following iNO administration compared to controls. CONCLUSIONS: iNO had no significant effect on clinically relevant pulmonary parameters or ICPs following TBI in both human patients and a porcine model. The pressure-based recruitment of the human lungs following TBI was preserved. Further investigation will be needed to determine the degree of utility of iNO in the setting of hypoxia after polytrauma.


Assuntos
Lesões Encefálicas Traumáticas , Óxido Nítrico , Humanos , Animais , Suínos , Pulmão , Hipóxia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Vasoconstrição , Administração por Inalação
2.
J Surg Res ; 295: 631-640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38101109

RESUMO

INTRODUCTION: Dynamic preload assessment measures including pulse pressure variation (PPV), stroke volume variation (SVV), pleth variability index (PVI), and hypotension prediction index (HPI) have been utilized clinically to guide fluid management decisions in critically ill patients. These values aid in the balance of correcting hypotension while avoiding over-resuscitation leading to respiratory failure and increased mortality. However, these measures have not been previously validated at altitude or in those with temporary abdominal closure (TAC). METHODS: Forty-eight female swine (39 ± 2 kg) were separated into eight groups (n = 6) including all combinations of flight versus ground, hemorrhage versus no hemorrhage, and TAC versus no TAC. Flight animals underwent simulated aeromedical evacuation via an altitude chamber at 8000 ft. Hemorrhagic shock was induced via stepwise hemorrhage removing 10% blood volume in 15-min increments to a total blood loss of 40% or a mean arterial pressure of 35 mmHg. Animals were then stepwise transfused with citrated shed blood with 10% volume every 15 min back to full blood volume. PPV, SVV, PVI, and HPI were monitored every 15 min throughout the simulated aeromedical evacuation or ground control. Blood samples were collected and analyzed for serum levels of serum IL-1ß, IL-6, IL-8, and TNF-α. RESULTS: Hemorrhage groups demonstrated significant increases in PPV, SVV, PVI, and HPI at each step compared to nonhemorrhage groups. Flight increased PPV (P = 0.004) and SVV (P = 0.003) in hemorrhaged animals. TAC at ground level increased PPV (P < 0.0001), SVV (P = 0.0003), and PVI (P < 0.0001). When TAC was present during flight, PPV (P = 0.004), SVV (P = 0.003), and PVI (P < 0.0001) values were decreased suggesting a dependent effect between altitude and TAC. There were no significant differences in serum IL-1ß, IL-6, IL-8, or TNF-α concentration between injury groups. CONCLUSIONS: Based on our study, PPV and SVV are increased during flight and in the presence of TAC. Pleth variability index is slightly increased with TAC at ground level. Hypotension prediction index demonstrated no significant changes regardless of altitude or TAC status, however this measure was less reliable once the resuscitation phase was initiated. Pleth variability index may be the most useful predictor of preload during aeromedical evacuation as it is a noninvasive modality.


Assuntos
Hemodinâmica , Hipotensão , Humanos , Feminino , Animais , Suínos , Volume Sistólico , Altitude , Fator de Necrose Tumoral alfa , Interleucina-6 , Interleucina-8 , Pressão Sanguínea , Hemorragia/diagnóstico , Hemorragia/etiologia , Hemorragia/terapia , Hidratação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...